

PII: S0040-4039(97)01737-1

Blepharismin 1-5, Novel Photoreceptor from the Unicellular Organism Blepharisma japonicum¹

Mitsuru Maeda,^a Hideo Naoki,^{*b} Tatsuomi Matsuoka,^{*c} Yoji Kato,^c Hiyoshizo Kotsuki,^d Kozo Utsumi,^e and Takaharu Tanaka^a

^aInstitute for Biomedical Research and ^bSuntory Bioorganic Research Institute, Suntory Limited, Osaka 618, Japan ^cDepartment of Biology and ^dChemistry, Kochi University, Akebono-cho, Kochi 780, Japan ^cInstitute of Medical Science, Center for Adult Diseases, Kurashiki 710, Japan

Abstract: The structures of new photoreceptor molecules mediating the photobehavior of the unicellular organism, Blepharisma japonicum, were determined spectroscopically. These molecules had a 4-hydroxyphenyl-11H-dibenzo[a,o]cyclohepta[pqr]perylene moiety as a common chromophore structure. © 1997 Elsevier Science Ltd.

It is generally believed that retinal, when bound to rhodopsin-like molecules, is the only photoreceptor responsible for photobehavior in many organisms. Recently, one of us has demonstrated that a pink-colored pigment called "blepharismin-2",² which occurs just beneath the plasma membrane of the ciliated protozoan, *Blepharisma*, is a primary photoreceptor pigment mediating the step-up photophobic response.³ Blepharismin-2 has also been demonstrated to be bound to a 200 kD membrane protein.⁴ In this paper we describe the isolation and structural elucidation of five blepharismins.

Blepharisma japonicum was cultured under dark conditions at 23 °C in a 0.1% cereal leaves infusion containing Enterobacter aerogenes, which was supplied by the Institute for Fermentation, Osaka, Japan. To extract the pigments, the packed cells (9.5 mL) were suspended in acetone (20 mL). The cells were centrifuged (8000 g, 10 min) and the pigment-containing supernatant was decanted, followed by complete solvent removal using a rotary evaporator in the dark. The pigments were dissolved in DMSO (10% aq) prior to application on a column (SEP-PAK tC₁₈, elution with acetonitrile/2-propanol = 1 : 1 v/v). The partially purified pigment was further subjected to an ODS column separation (Asahipak Hikarisil-C18) with CH3CN (70% aq) containing 0.05% TFA (final concentration) in the isocratic mobile phase to provide sequentially blepharismin (BL) 1, 2, 3, 4 and 5. For the purpose of their structural elucidation, each fraction was treated with diazomethane (30 min, 0 °C) to afford BL-1' (1.7 mg), BL-2' (2.0 mg), BL-3' (2.1 mg), BL-4' (1.3 mg) and BL-5' (2.3 mg), respectively.⁵ The ¹H NMR spectra of all of these pigments revealed the presence of four deuterium exchangeable protons, corresponding to hydrogen-bonded hydroxyl groups in the chemical shift region around 14 ppm. The molecular weight of the methylated blepharismins (BL-1'-5') was increased by 56 mass units more than their native blepharismins (BL-1-5) as determined by high resolution FABMS measurement.⁶ These results and their resemblance with those of hypericin⁷ suggest that these blepharismins possess a naphthodianthrone skeleton with four peri-hydroxyl groups as a common structural component. Furthermore,

these compounds contain a *p*-hydroxybenzylidene unit (δ_H 5.95-6.0 (two sets of 2H, d, J = 8.7 Hz) and 6.90-7.0 (1H, s)). This was confirmed by a characteristic carbon signal at δ_C 31.3-33.2 in the HETCOR spectrum and the HMBC correlation of δ_C 31.3-33.2 (C-11) to δ_H 5.99-6.0 (two methines; H-2', 6'), which in turn showed a cross peak with the C-4' quaternary ipso carbon (δ_C 152.8) bearing a hydroxyl group.

The molecular formula of BL-5, C42H32O11, was determined by high resolution FABMS (m/z 713.2030, $[M + H]^+$, $\Delta + 0.7$ mmu). In the ¹H NMR spectrum of **BL-5'**, four methoxyl signals (δ_H 3.28, 3.30, 3.95 and 4.13) and a singlet methyl ($\delta_{\rm H}$ 2.45) were detected along with two isopropyl groups ($\delta_{\rm H}$ 1.46, 1.50 (each 6H, d), and 3.8 (2H, m)) and an aromatic proton (δ_H 6.87 (1H, s)). In the HMBC spectrum of **BL-5'**, the C-1 quaternary carbon (δ_{C} 165.3) bearing a hydrogen-bonded hydroxyl group (δ_{H} 14.2) was correlated with a multiplet methine signal (bH 3.8, C-2-i-Pr). The C-6 quaternary carbon (bC 165.4) bearing a hydrogenbonded hydroxyl group was also correlated with another isopropyl group (C-5-i-Pr). C-3 and C-4 quaternary carbon signals (&C 161.9 and 162.2) attached to methoxyl groups (&H 3.30 and 3.28) were correlated with two methyls (δ_H 1.46 (C-2-i-Pr) and 1.5 (C-5-i-Pr), respectively).⁸ The C-10 quaternary carbon signal (δ_C 161.0) adjacent to a third methoxyl group (δ_H 3.95, s, C-10-OCH₃) showed a cross peak with an isolated methine (δ_H 6.90, H-11) and a methyl singlet (8H 2.45, C-9-CH3). The C-12 quaternary carbon signal (8C 161.6) adjacent to a fourth methoxyl group (δ_H 4.13, C-12-OCH₃) showed a correlation with two methine singlets (δ_H 6.90, H-11 and 6.87, H-13). The C-14 quaternary carbon ($\delta_{\rm C}$ 164.7) bearing a hydrogen-bonded hydroxyl group $(\delta_{\rm H} 13.6, \text{ H-14})$ showed a correlation to a methine singlet ($\delta_{\rm H} 6.87, \text{ H-13}$). The C-9 quaternary carbon ($\delta_{\rm C}$ 121.2) attached to a methyl group (δ_H 2.45, C-9-CH₃) was correlated with a hydrogen-bonded hydroxyl group (δ_H 13.6, C-8-OH). Furthermore, NOE's were observed between the C-10-methoxyl group (δ_H 3.95) and the C-9-methyl group ($\delta_H 2.45$) and also the H-11-methine singlet ($\delta_H 6.90$). NOE's were also observed between the C-12-methoxyl group (&H 4.13) and the methine signal (&H 6.87, H-13). Accordingly, the C-11 carbon should be connected to C-10a and C-11a.

Fig. 1. Structures of blepharismin (BL) 1-5 (R = H) and their methylated derivatives 1'-5' (R = CH₃). BL-1: $R_1 = R_2 = Et$, $R_3 = H$; BL-2: $R_1 = Et$, $R_2 =$ i-Pr, $R_3 = H$; BL-3: $R_1 = R_2 = i$ -Pr, $R_3 = H$; BL-4: $R_1 = Et$, $R_2 = i$ -Pr, $R_3 = Me$ or $R_1 = i$ -Pr, $R_2 = Et$, $R_3 = Me$; BL-5: $R_1 = R_2 = i$ -Pr, $R_3 = Me$.

These results lead to the structure for **BL-5** shown in Figure 1 with the name 1,3,4,6,8,10,12,14octahydroxy-11-(4-hydroxyphenyl)-2,5-diisopropyl-9-methyl-11H-dibenzo[a,o]cyclohepta[pqr]perylene-7,15dione. The other four blepharismins have alkyl group substituents at the C-2, -5 or -9 positions as shown by HMBC and NOE experiments: 2, 5-diethyl for **BL-1**; 2-ethyl-5-isopropyl for **BL-2**; 2,5-diisopropyl for **BL-3**;

	BL-1'	BL-2	BL-2'		BL-3'		BL-4'		BL-5'	
Position	δር δΗ	δC	δΗ	δር δι	ł	δር δ	н	δር δι	H	
1	164.4	164.	2	165.1		165.3 ^k	7	165.3		
2	125.3 ^b	125.	5	127.4 ^b		125.8		128.0		
3	161.6	162.	0	161.8		162.1		161.9 ^b		
3a	127.2	126.	3 <i>b</i>	127.4 ^b		126.1		127.5 ^c		
3b	127.2	126.	3 b	127.4 ^b		126.1		127.5 ^c		
4	161.6	162.	5	161.8		162.1		162.2 ^b		
5	125.9 ^b	127.	3	127.4 ^b		127.4		128.0		
6	164.4	165.	0	165.1		165.3 ^k	,	165.4		
6a	105.9	109.)c	106.3		106.30		106.3d		
7	186.7	187.	0	187.0		187.5		187.2 ^e		
7a	108.6	108.	9	109.0		111.0 ^c		111.7		
7d	127.0	126.	3 <i>b</i>	127.2 ^b		126.1		126.2 ^c		
8	163.8	165.	0	164.6		164.8 ^k	,	164.7		
9	99.9 6.8	5s 100.	2 6.84 s ^d	100.2	6.85 s	121.2		121.2		
10	161.6	162.	0	161.8		161.0		161.0		
10a	125.9 ^b	125.	7	125.5		129.5		129.5		
11	31.3 7.0	0 s 31.	7 6.95 s ,	31.7	7.00 s	33.2	6.90 s	33.2	6.90 s	
11a	125.9 ^b	125.	7	125.5		125.8		125.6		
11d	126.5	125.	5 <i>b</i>	126.1 ^b		126.1		126.0 ^c		
11e	134.7	135.	0	134.9		133.0		135.2		
12	161.6	162.	0	161.8		161.6		161.6		
13	99.9 6.8	5 s 100.	2 6.85 s ^d	100.2	6.85 s	100.2	6.88 s	100.2	6.87 s	
14	163.8	164.	2	164.6		164.4 ^b	,	164.7		
14a	108.6	108.	9	109.0		109.30		109.3		
15	186.7	187.	0	187.0		187.5		187.6 ^e		
15a	105.9	106.2	2c	106.3		106.40		106.4d		
15b	127.0	126.	3 <i>b</i>	127.2 ^b		126.1		126.2 ^c		
15c	126.5	125.	5 <i>b</i>	126.1 ^b		126.1		126.0 ^c		
15 d	134.7	135.	0	134.9		133.0		133.0		
3-OMe	60.8 3.4	0s 61.	3 3.34 s	61.3	3.30 s	61.0	3.30 s	61.0	3.30 s	
4-OMe	60.8 3.4	0s 61.	0 3.26 s	61.3	3.30 s	61.3	3.40 s	61.2	3.28 s	
10-OMe	56.1 4.1	0s 56.	4 4.10 s	56.4	4.10 s	61.6	3.95 s	61.6	3.95 s	
12-OMe	56.1 4.1	0s 56	4 4.00 s	56.4	4.10 s	56.5	4.13 s	56.5	4.13 s	
1'	133.1	133.	4	133.5		133.8		133.8		
2', 6'	127.2 6.0	0 d8 127.	3 6.00 d8	127.2 ^b	6.00 dB	127.4	6.00 dg	127.4	5.99 d8	
3', 5'	112.9 5.9	0 d8 113.	2 5.95 dB	113.2	5.90 d8	113.3	5.95 d8	113.2	5.95 d8	
4'	152.0	152.	8	152.7		152.8		152.8		
1-OH	13.9	s	14.05 s		14.2 s		14.1 s		14.2 s	
6-OH	13.9) s	14.05 s		14.2 s		14.0 s ^d		14.1 s	
8-OH	13.5	ō s	13.6 s ^e		13.5 s		13.5 s ^d		13.6 s	
14-OH	13.5	ö s	13.5 s ^e		13.5 s		13.7 s ^d		13.6 s	

Table 1. ¹³C (100 MHz) and ¹H NMR (400 MHz) Data for Methylated Blepharismins in CDC13.^a

 $\overline{a \, ^{13}\text{C}}$ and ¹H NMR data of R₁, R₂, and R₃ are shown in ref 5. *b,c,d,e,f* Signals are interchangeable within the same superscripts. *B* Coupling constant (*J*) = 8.7 Hz.

2-ethyl-5-isopropyl-9-methyl or 5-ethyl-2-isopropyl-9-methyl moieties for **BL-4**. ¹H and ¹³C chemical shift assignments for these pigments are shown in Table 1. Interestingly, computational techniques using semiempirical molecular mechanics calculations reveal the "propeller" conformation for **BL-1** as the most favorable conformer (Figure 2).⁹

In conclusion, we succeeded in determining the structures of five blepharismins that act as novel phtoreceptor molecules. In view of the great interest in their novel structures and their unusual biological and chemical properties, ¹⁰ the present work will constitute an important contribution to advancing knowledge of photodynamic action. Further studies are now in progress in these laboratories.

Acknowledgement: We thank Mr. T. Arita for help in purifying the blepharismin pigments.

References and Notes

- 1. This work was presented at the 12th International Congress on Photobiology. Abstract of ICP., 1996. p. 185 (S295). Review: Matsuoka, T. Iden 1997, 51, 73-77.
- 2. Giese, A. C. Blepharisma. A Light Sensitive Protozoan; Stanford Univ. Press: Stanford, CA., 1973.
- a) Matsuoka, T.; Watanabe, Y.; Sagara, Y.; Takayanagi, M.; Kato, Y. Photochem. Photobiol., 1995, 62, 190-193. b) Matsuoka, T.; Sato, M.; Maeda, M.; Naoki, H.; Tanaka, T. Ibid. 1997, 65, 915-921.
- a) Matsuoka, T.; Murakami, Y.; Kato, Y. Photochem. Photobiol. 1993, 57, 1042-1047.
 b) Matsuoka, T.; Tsuda, T.; Ishida, M.; Kato, Y.; Takayanagi, M.; Fujino, T.; Mizuta, S. Ibid., 1994, 60, 598-604.
- 5. BL-1': FABMS (3-nitrobenzyl alcohol matrix) m/z 727 [M + H]+; UV-VIS (MeOH) λ_{max} (log ε) 552 (4.17), 521 (4.12), 475 (4.18), 414 (3.98), 361 (4.04) nm: ¹H NMR (400 MHz) δ 1.3 (6H, t, J = 7.5 Hz, 2-, 5-CH2CH3), 2.9 (4H, m, 2-, 5-CH2CH3); ¹³C NMR (100 MHz) & 13.6 (2-CH2CH3), 13.8 (5-CH2CH3), 16.7a (2-<u>CH2</u>CH3), 18.4a (5-<u>CH2</u>CH3); a may be interchanged. BL-2': FABMS m/z 741 [M + H]+; UV-VIS (MeOH) λ_{max} (log ϵ) 554 (4.12), 523 (4.05), 476(4.10), 415 (3.91), 361 (3.97) nm: CD extrema/nm ($\Delta\epsilon$) 410 (2.57), 363 (-0.55), 333 (-0.61), 307 (0.80), 273 (-2.88), 243 (5.47); ¹H NMR (400 MHz) δ 1.3 (3H, t, J = 7.5)Hz, 2-CH₂CH₃), 1.5 (6H, d, J = 7.1 Hz, 5-CH(Me)₂), 2.9 (2H, m, 2-CH₂CH₃), 3.8 (1 H, m, 5-CH(Me)₂); ¹³C NMR (100 MHz) δ 14.0 (2-CH₂CH₃), 17.1 (2-CH₂CH₃), 20.5 & 20.8 (5-CH(Me)₂), 25.2 (5-CH(Me)₂). BL-**3'**: FABMS m/z 755 [M + H]⁺; UV-VIS (MeOH) λ_{max} (log ε) 555 (4.14), 523 (4.08), 476 (4.13), 416 (3.95), 361 (4.01) nm; ¹H NMR (400 MHz) δ 1.5 (6H, d, J = 7.1 Hz, 2-CH(<u>Me)</u>₂), 1.6 (6H, t, J = 7.1 Hz, 5-CH(Me)2), 3.8 (2H, m, 2-, 5-CH(Me)2); ¹³C NMR (100 MHz) & 20.5 & 20.8 (2, 5-CH(Me)2), 25.4 <u>CH(Me)</u>₂). **BL-4'**: FABMS: m/z 755 [M + H]⁺; UV-VIS (MeOH) λ_{max} (log ε) 555 (4.11), 522 (4.05), 481(4.12), 426 (3.87), 364 (3.92) nm: CD extrema/nm (Δε) 476 (4.46), 363 (-5.13), 308 (7.25), 284 (-5.13), 268 (-0.98), 257 (-3.18), 245 (0.07); ¹H NMR (400 MHz) δ 1.3 (3H, t, J = 7.5 Hz, 2-CH₂CH₃), 1.5 (6H, d, J= 7.1 Hz, 5-CH(Me)₂), 2.45 (3H, s, 9-Me), 2.91 (2H, m, 2-<u>CH</u>₂CH₃), 3.83 (1H, m, 5-<u>CH</u>(Me)₂); 13 C NMR (100 MHz) δ 14.0 (2-CH₂CH₃), 17.2 (2-<u>CH</u>₂CH₃), 20.4 & 20.9 (5-CH(<u>Me</u>)₂), 25.2 (5-<u>CH</u>(Me)₂), 41.0 (9-Me). **BL-5':** FABMS m/z 769 [M + H]⁺; UV-VIS (MeOH) λ_{max} (log ε) 557 (4.08), 524 (4.02), 483 (4.10), 425 (3.82), 361 (3.87) nm: CD extrema/nm (Δε) 386 (4.46), 363 (0.53), 314 (-0.90), 285 (0.95), 266 (-0.56), 248 (1.21); ¹H NMR (400 MHz) δ 1.46 (6H, d, J = 7.1 Hz, 2-CH(<u>Me)</u>₂), 1.5 (6H, d, J = 7.1 Hz, 5-CH(<u>Me)</u>₂), 2.45 (3H, s, 9-Me), 3.8 (2H, m, 2-5-CH(Me)₂); ¹³C NMR & 20.4 (2-CH(Me)₂), 20.7 (5-CH(Me)₂), 25.3 (2-<u>CH(Me)</u>₂), 25.5 (5-<u>CH(Me)</u>₂), 41.0 (9-Me).
- FABMS (glycerin or triethanolamine matrix): BL-1, m/z 669; BL-2, m/z 683; BL-3, m/z 697; BL-4, m/z 697; BL-5, m/z 711 (M - H)⁻.
- 7. Falk, H.; Schmitzberger, W. Monatsh. Chem. 1992, 123, 731-739.
- 8. Marshall, J. L. Carbon-Carbon and Carbon-Proton NMR Couplings: Applications to Organic Stereochemistry and Conformational Analysis: Verlag Chemie International, Inc. 1983; pp 42-51.
- Kotsuki, H.; Matsuoka, T. unpublished results. Calculations were performed by MOPAC '93 (PM 3) implemented in ANCHOR IITM, a molecular design system for SUNTM computers, developed by FUJITSU, Ltd. and Kureha Chemical Industry Co., Ltd., 1992. MOPAC 93: J. J. P. Stewart and Fujitsu, Ltd., Tokyo, Japan, 1993.
- 10. Kato, Y.; Watanabe, Y.; Sagara, Y.; Murakami, Y.; Sugiyama, M.; Matsuoka, T. J. Photochem. Photobiol., B: Biology 1996, 34, 29-33.

(Received in Japan 22 July 1997; accepted 22 August 1997)